p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.10D4, (C2×C8).8D4, (C2×D4).17Q8, (C2×Q8).13Q8, C4.9C42⋊6C2, C4.60(C4⋊1D4), M4(2).C4⋊9C2, C23.14(C4○D4), C4.102(C22⋊Q8), (C22×C8).89C22, (C22×C4).743C23, C22.39(C22⋊Q8), C42⋊C2.73C22, C42⋊C22.10C2, C42.6C22⋊25C2, C2.11(C23.4Q8), C4.121(C22.D4), (C2×M4(2)).239C22, C22.36(C22.D4), (C2×C4).24(C2×Q8), (C2×C4).86(C4○D4), (C2×C4).1385(C2×D4), (C22×C8)⋊C2.2C2, (C2×C4○D4).70C22, SmallGroup(128,830)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.10D4
G = < a,b,c,d | a4=b4=1, c4=b2, d2=a2b-1, ab=ba, cac-1=a-1b-1, dad-1=a-1b2, cbc-1=b-1, bd=db, dcd-1=b2c3 >
Subgroups: 208 in 105 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, C4≀C2, C4⋊C8, C8.C4, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C2×C4○D4, C4.9C42, (C22×C8)⋊C2, C42⋊C22, C42.6C22, M4(2).C4, C42.10D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C22.D4, C4⋊1D4, C23.4Q8, C42.10D4
Character table of C42.10D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | complex lifted from C4○D4 |
ρ20 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ85 | 2ζ83 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ83 | 2ζ85 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ8 | 2ζ87 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ87 | 2ζ8 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 7)(2 27 6 31)(3 5)(4 25 8 29)(9 15)(10 23 14 19)(11 13)(12 21 16 17)(18 20)(22 24)(26 28)(30 32)
(1 32 5 28)(2 29 6 25)(3 26 7 30)(4 31 8 27)(9 20 13 24)(10 17 14 21)(11 22 15 18)(12 19 16 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 20 28 9 5 24 32 13)(2 19 29 16 6 23 25 12)(3 18 30 15 7 22 26 11)(4 17 31 14 8 21 27 10)
G:=sub<Sym(32)| (1,7)(2,27,6,31)(3,5)(4,25,8,29)(9,15)(10,23,14,19)(11,13)(12,21,16,17)(18,20)(22,24)(26,28)(30,32), (1,32,5,28)(2,29,6,25)(3,26,7,30)(4,31,8,27)(9,20,13,24)(10,17,14,21)(11,22,15,18)(12,19,16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,20,28,9,5,24,32,13)(2,19,29,16,6,23,25,12)(3,18,30,15,7,22,26,11)(4,17,31,14,8,21,27,10)>;
G:=Group( (1,7)(2,27,6,31)(3,5)(4,25,8,29)(9,15)(10,23,14,19)(11,13)(12,21,16,17)(18,20)(22,24)(26,28)(30,32), (1,32,5,28)(2,29,6,25)(3,26,7,30)(4,31,8,27)(9,20,13,24)(10,17,14,21)(11,22,15,18)(12,19,16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,20,28,9,5,24,32,13)(2,19,29,16,6,23,25,12)(3,18,30,15,7,22,26,11)(4,17,31,14,8,21,27,10) );
G=PermutationGroup([[(1,7),(2,27,6,31),(3,5),(4,25,8,29),(9,15),(10,23,14,19),(11,13),(12,21,16,17),(18,20),(22,24),(26,28),(30,32)], [(1,32,5,28),(2,29,6,25),(3,26,7,30),(4,31,8,27),(9,20,13,24),(10,17,14,21),(11,22,15,18),(12,19,16,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,20,28,9,5,24,32,13),(2,19,29,16,6,23,25,12),(3,18,30,15,7,22,26,11),(4,17,31,14,8,21,27,10)]])
Matrix representation of C42.10D4 ►in GL4(𝔽17) generated by
1 | 0 | 10 | 7 |
2 | 16 | 16 | 1 |
0 | 0 | 0 | 13 |
0 | 0 | 13 | 0 |
4 | 0 | 13 | 4 |
0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
15 | 2 | 14 | 3 |
0 | 0 | 0 | 8 |
0 | 2 | 0 | 0 |
4 | 15 | 15 | 2 |
8 | 9 | 9 | 8 |
0 | 9 | 0 | 0 |
0 | 0 | 0 | 8 |
0 | 0 | 8 | 0 |
G:=sub<GL(4,GF(17))| [1,2,0,0,0,16,0,0,10,16,0,13,7,1,13,0],[4,0,0,0,0,4,0,0,13,0,13,0,4,0,0,13],[15,0,0,4,2,0,2,15,14,0,0,15,3,8,0,2],[8,0,0,0,9,9,0,0,9,0,0,8,8,0,8,0] >;
C42.10D4 in GAP, Magma, Sage, TeX
C_4^2._{10}D_4
% in TeX
G:=Group("C4^2.10D4");
// GroupNames label
G:=SmallGroup(128,830);
// by ID
G=gap.SmallGroup(128,830);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,176,422,387,1018,248,1411,4037,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^2*b^-1,a*b=b*a,c*a*c^-1=a^-1*b^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^2*c^3>;
// generators/relations
Export